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Abstract

Dataset distillation has emerged as a powerful approach
for reducing data requirements in deep learning. Among
various methods, distribution matching-based approaches
stand out for their balance of computational efficiency and
strong performance. However, existing distance metrics
used in distribution matching often fail to accurately cap-
ture distributional differences, leading to unreliable mea-
sures of discrepancy. In this paper, we reformulate dataset
distillation as a minmax optimization problem and intro-
duce Neural Characteristic Function Discrepancy (NCFD),
a comprehensive and theoretically grounded metric for
measuring distributional differences. NCFD leverages the
Characteristic Function (CF) to encapsulate full distribu-
tional information, employing a neural network to opti-
mize the sampling strategy for the CF’s frequency argu-
ments, thereby maximizing the discrepancy to enhance dis-
tance estimation. Simultaneously, we minimize the differ-
ence between real and synthetic data under this optimized
NCFD measure. Our approach, termed Neural Charac-
teristic Function Matching (NCFM), inherently aligns the
phase and amplitude of neural features in the complex plane
for both real and synthetic data, achieving a balance be-
tween realism and diversity in synthetic samples. Exper-
iments demonstrate that our method achieves significant
performance gains over state-of-the-art methods on both
low- and high-resolution datasets. Notably, we achieve a
20.5% accuracy boost on ImageSquawk. Our method also
reduces GPU memory usage by over 300× and achieves
20× faster processing speeds compared to state-of-the-art
methods. To the best of our knowledge, this is the first work
to achieve lossless compression of CIFAR-100 on a single
NVIDIA 2080 Ti GPU using only 2.3 GB of memory.
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Figure 1. Comparison of different paradigms for dataset distilla-
tion. (a) The MSE approach compares point-wise features within
Euclidean space, denoted as ZR, while MMD evaluates moment
differences in Hilbert space, ZH. (b) Our method redefines dis-
tribution matching as a minmax optimization problem, where the
distributional discrepancy is parameterized by a neural network ψ.
We begin by optimizing ψ to maximize the discrepancy, thereby
establishing the latent space Zψ , and subsequently optimize the
synthesized data D̃ to minimize this discrepancy within Zψ .

1. Introduction
Deep neural networks (DNNs) have achieved remarkable
progress across a range of tasks, largely due to the avail-
ability of vast amounts of training data. However, training
effectively with limited data remains challenging and cru-
cial, particularly when large-scale datasets become too vo-
luminous for storage. To address this, dataset distillation
has been proposed to condense a large, real dataset into a
smaller, synthetic one [6, 49, 52, 55, 56]. Dataset distilla-
tion has been applied in various areas, including neural ar-
chitecture search [33, 44], continual learning [15, 51], med-
ical image computing [29], and privacy protection [7, 8, 11].

Among dataset distillation methods, feature or distribu-
tion matching (DM) approaches [47, 55] have gained popu-
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Figure 2. Comparison of different distribution matching methods. (a) Illustration of embedded features from the real domain to complex-
plane features using Euler’s formula [13]. The latent neural feature Φx(t) captures the amplitude and phase information. (b) MMD-based
methods align feature moments in the embedded domain but may not effectively align the overall distributions. (c) CF-based methods
directly compare distributions by balancing the amplitude and phase in the complex plane, enhancing distributional similarity.
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Figure 3. Comparison of performance, peak GPU memory usage,
and distillation speed between the state-of-the-art (SOTA) distil-
lation method and our NCFM on CIFAR-100 across various IPC
values, evaluated on 8 NVIDIA H100 GPUs. Notably, NCFM
reduces GPU memory usage by over 300×, achieves 20× faster
distillation, and delivers better performance. We also successfully
demonstrated lossless distillation using only 2.3GB GPU memory.

larity for their effective balance between high performance
and computational efficiency. Unlike bi-level optimization-
based distillation approaches [6, 20, 24, 54, 56], DM-based
methods bypass the need for nested optimization. For in-
stance, when learning with 50 images per class (IPC) on
CIFAR-10 dataset, DM methods achieve higher test accu-
racy than gradient matching methods [24, 54, 56], while re-
quiring only a tenth of the computation time.

A key challenge in DM lies in defining an effective
metric to measure distributional discrepancies between real
and synthetic datasets. Early methods primarily employed
Mean Squared Error (MSE) to compare point-wise fea-
tures [10, 38, 47], which operates in Euclidean space, ZR,
as illustrated on the left of Figure 1(a). However, MSE di-
rectly matches pixel-level or patch-level information with-
out capturing the semantic structures embedded in high-
dimensional manifolds, which falls short for distribution
comparison. Later methods [53, 55, 57] employ Maximum
Mean Discrepancy (MMD) as a metric. Nevertheless, re-
search in generative modeling [4, 25] has shown that MMD
aligns moments of distributions in a latent Hilbert space,
ZH, as shown on the right of Figure 1(a). While distri-
butional equivalence implies moment equivalence, the con-
verse is not necessarily true: aligning moments alone does
not guarantee full distributional matching. As illustrated in

Figure 2(b), MMD-based methods may fail to capture over-
all distributional alignment between real and synthetic data,
resulting in suboptimal synthesized image quality.

To overcome these limitations, we propose a novel ap-
proach that reformulates distribution matching as an adver-
sarial minmax optimization problem, as depicted in Fig-
ure 1(b). By leveraging the minmax paradigm, we adap-
tively learn the discrepancy metric, enabling it to maxi-
mize the separability between real and synthetic data dis-
tributions. This dynamic adjustment addresses the rigid-
ity of fixed metrics like MSE and MMD. Meanwhile, the
synthetic data is iteratively optimized to minimize the dy-
namically refined discrepancy measure. Building upon this
foundation, we introduce Neural Characteristic Discrep-
ancy (NCFD), a parameterized metric based on the Char-
acteristic Function (CF), which provides a precise and com-
prehensive representation of the underlying probability dis-
tribution. Defined as the Fourier transform of the proba-
bility density function, the CF encapsulates all relevant in-
formation about a distribution [3, 5, 14, 21, 31, 41]. The
CF offers a one-to-one correspondence with the cumulative
density function, ensuring the robustness and reliability.

In our framework, an auxiliary network embeds features
while a lightweight sampling network is optimized to dy-
namically adjust its CF sampling strategy using a scale mix-
ture of normals. During the distillation process, we iter-
atively minimize the NCFD to bring synthetic data closer
to real data, while training the sampling network to max-
imize NCFD, thereby improving the metric’s robustness
and accuracy. Unlike MMD which has quadratic compu-
tational complexity, NCFD achieves linear time computa-
tional complexity. Our method, Neural Characteristic Func-
tion Matching (NCFM), aligns both the phase and ampli-
tude of neural features in the complex plane, achieving a
balanced synthesis of realism and diversity in the gener-
ated images. As shown in Figure 2(c), NCFM effectively
captures overall distributional information, leading to well-
aligned synthetic and real data distributions after optimiza-
tion. Our contributions are as follows:

1. We reformulate the distribution matching problem as a
minmax optimization problem, where the sampling net-
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work maximizes the distributional discrepancy to learn a
proper discrepancy metric, while the synthesized images
are optimized to minimize such discrepancy.

2. We introduce Neural Characteristic Function Matching
(NCFM), which aligns the phase and amplitude informa-
tion of neural features in the complex plane for both real
and synthetic data, achieving a balance between realism
and diversity in synthetic data.

3. Extensive experiments across multiple benchmark
datasets demonstrate the superior performance and
efficiency of NCFM. Particularly, on high-resolution
datasets, NCFM achieves significant accuracy gains of up
to 20.5% on ImageSquawk and 17.8% on ImageMeow
at 10 IPC compared to SOTA methods.

4. NCFM achieves unprecedented efficiency in computa-
tional resources. As shown in Figure 3, our method
dramatically reduces resource requirements with better
performance, achieving more than 300× reduction in
GPU memory usage compared with DATM [16]. Most
remarkably, NCFM demonstrates lossless dataset dis-
tillation on both CIFAR-10 and CIFAR-100 using
about merely 2GB GPU memory, enabling all experi-
ments to be conducted on a single NVIDIA 2080 Ti GPU.

2. Related Work
Dataset Distillation Methods Based on Distribution and
Feature Matching. Dataset distillation was proposed
by [49]. Compared with various bi-level DD methods,
DM [55] is regarded as a efficient method that balances
the performance and computational efficiency, without in-
volving the nested model optimization. These methods
can be classified into two directions, i.e., point-wise and
moment-wise matching. For moment-wise matching, DM-
based methods [53, 55, 57] propose to minimize the maxi-
mum mean discrepancy (MMD) between synthetic and real
datasets. For point-wise feature matching, they typically
design better strategies to match features extracted across
layers in convolutional neural networks, and apply fur-
ther adjustments to improve the performance [10, 38, 47].
However, moment-based and point-based matching meth-
ods may not capture the overall distributional discrepancy
between synthetic and real data, as they are not sufficient
conditions for distributional equivalence.
Characteristic Function as a Distributional Metric. The
characteristic function is a unique and universal metric for
measuring distributional discrepancy, defined as the Fourier
transform of the probability density function [3]. The CF
of any real-valued random variable completely defines its
probability distribution, providing an alternative analyti-
cal approach compared to working directly with probabil-
ity density or cumulative distribution functions. Unlike the
moment-generating function, the CF always exists when
treated as a function of a real-valued argument [5]. Re-

cently, the CFD has been adopted in deep learning for var-
ious tasks, e.g., several works have been proposed to use
the CFD for generative modeling [1, 27]. However, none of
prior works have considered the CFD for distillation.

3. Preliminaries: Distribution Matching
Distribution Matching (DM) was first introduced by [55]
as an alternative to traditional bi-level optimization tech-
niques, such as gradient matching methods [20, 24, 54, 56]
and trajectory matching methods [6, 9, 12, 16]. Classi-
cal DM approaches focus on minimizing the discrepancy
between the distributions of real and synthetic data, typi-
cally categorized into two main types: feature point match-
ing and moment matching. Feature point matching meth-
ods [10, 38, 47] directly compare point-wise features using
Mean Square Error (MSE), as defined by:

LMSE = Ex∼D,x̃∼D̃

[
∥f(x)− f(x̃)∥2

]
, (1)

where f denotes the feature extractor network, D and D̃
represent the real and synthetic data distributions, respec-
tively, x and x̃ are samples drawn from D and D̃. How-
ever, MSE may not be ideal for comparing distributions, as
it only considers direct feature comparisons in Euclidean
space, neglecting important semantic information.

In another line, notable works employed Maximum
Mean Discrepancy (MMD) to align high-order moments in
the latent feature space [53, 55, 57]. Rigorously, MMD is
defined to match moments within the Reproducing Kernel
Hilbert Space (RKHS) induced by a selected kernel func-
tion. The MMD loss can be formulated as:

sup
f∈F

∥Ex∼D [f(x)]− Ex̃∼D̃ [f(x̃)]∥2 ,

= sup
f∈F

(
KD,D +KD̃,D̃ − 2KD,D̃

)
,

(2)

where KD,D̃ = Ex∼D,x̃∼D̃[Kf(x),f(x̃)] denotes the kernel
function associated with feature extractor f in function class
F . The choice of kernel function K is not unique and re-
quires careful selection for MMD to be effective. However,
instead of selecting certain kernel function, most DM-based
methods [10, 55, 57] align moments directly in the feature
space, commonly approximated as:

LMMD = ∥Ex∼D [f(x)]− Ex̃∼D̃ [f(x̃)]∥2 . (3)
We argue that such empirical MMD estimates lack rigor, as
they do not provide a maximal upper bound on the discrep-
ancy, falling short of MMD’s theoretical requirements.

4. Adversarial Distribution Matching
4.1. Minmax Framework
To address existing challenges with discrepancy measure
selection, we propose a new approach that reformulates dis-
tribution matching as a minmax optimization problem. In
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Figure 4. Dataset Distillation with Neural Characteristic Function Matching (NCFM). Real and synthetic data points are sampled and
embedded through a feature extractor network. The synthetic data is optimized by minimizing the distributional discrepancy between real
and synthetic data, measured via the Neural Characteristic Function Discrepancy (NCFD) in the complex plane. Additionally, an auxiliary
network learns an optimal sampling distribution for the frequency arguments of the characteristic function. Best viewed in color.

this framework, we maximize the discrepancy measure to
define a robust discrepancy metric, parameterized by a neu-
ral network ψ. Concurrently, we minimize the discrepancy
between the synthetic dataset D̃ and the real dataset D by
optimizing the synthetic data distribution D̃. Formally, this
minmax optimization problem is expressed as:

min
D̃

max
ψ

L(D̃,D, f, ψ), (4)

where L denotes the discrepancy measure, f is the feature
extractor network, and ψ is the network learning the dis-
crepancy metric. This minmax framework seeks the opti-
mal synthetic data distribution D̃ that minimizes L while
network ψ maximizes L to establish a robust metric.

4.2. Neural Characteristic Function Matching
4.2.1. Neural Characteristic Function Discrepancy
To define a suitable discrepancy metric within this minmax
framework, we propose a novel discrepancy measure based
on the characteristic function (CF), which enables direct and
robust assessment of distributional discrepancies. Charac-
teristic functions are a mainstay in probability theory, often
used as an alternative to probability density functions due
to their unique properties. Specifically, the CF of a ran-
dom variable x is the expectation of its complex exponen-
tial transform, defined as:

Φx(t) = Ex

[
ej⟨t,x⟩

]
=

∫
x

ej⟨t,x⟩dF (x), (5)

where F (x) denotes the cumulative distribution function
(cdf) of x, j =

√
−1, and t is the frequency argument.

Since the cdf is not directly accessible in practice, we ap-
proximate the CF empirically as Φx(t) =

1
N

∑N
i=1 e

j⟨t,xi⟩,
where N is the sample size in the dataset. The CF provides
a theoretically principled description of a distribution, sum-
marized in the following theorems.

Theorem 1 (Lévy’s Convergence Theorem [31]) Let
{Xn}∞n=1 be a sequence of random variables with char-
acteristic functions Φn(t) = EXn

[
ej⟨t,Xn⟩

]
. Suppose

Φn(t) → Φ(t) pointwise for each t ∈ Rd as n → ∞. If
Φ(t) is continuous at t = 0, then there exists a random
variable X with characteristic function Φ(t), and Xn

converges in distribution to X .

Theorem 2 (Uniqueness for Characteristic Functions [14])
If two random variables X and Y have the same charac-
teristic function, ΦX(t) = ΦY (t) for all t, then X and Y
are identically distributed. In other words, a characteristic
function uniquely determines the distribution.

By Theorems 1 and 2, the empirical CF weakly converges to
the population CF, ensuring that the CF serves as a reliable
proxy for the underlying distribution. Based on the CF, we
define our characteristic function discrepancy (CFD) as:

CT (x, x̃)=
∫
t

√
(Φx(t)−Φx̃(t))(Φ̄x(t)−Φ̄x̃(t))︸ ︷︷ ︸

Chf(t)

dFT (t),

(6)
where Φ̄ is the complex conjugate of Φ, and FT (t) is the
CDF of a sampling distribution on t. To simplify, we let
Chf(t) = (Φx(t)−Φx̃(t))(Φ̄x(t)−Φ̄x̃(t)) for further anal-
ysis. We show that CT (x, x̃) defines a valid distance metric
in the following theorem.

Theorem 3 (CFD as a Distance Metric.) The CF discrep-
ancy CT (x, x̃), as defined in Eq. (6), serves as a dis-
tance metric between x and x̃ when the support of T re-
sides in Euclidean space. It satisfies the properties of non-
negativity, symmetry, and the triangle inequality.

Theorem 3 establishes that CFD is a valid distance metric.
Furthermore, we demonstrate that this formulation decom-
poses CFD into phase, ax(t), and amplitude, |Φx(t)|, com-
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ponents through Euler’s formula:

Chf(t) = |Φx(t)|2 + |Φx̃(t)|2

− |Φx(t)| |Φx̃(t)| (2 cos(ax(t)− ax̃(t)))

= (|Φx(t)− Φx̃(t)|)2︸ ︷︷ ︸
amplitude difference

+ 2 |Φx(t)| |Φx̃(t)| (1− cos(ax(t)− ax̃(t)))︸ ︷︷ ︸
phase difference

,

(7)

• Phase Information: the term 1− cos(ax(t)−ax̃(t)) rep-
resents the phase, encoding data centres crucial for realism.
• Amplitude Information: the term |Φx(t)− Φx̃(t)|2 cap-
tures the distribution scale, contributing to the diversity.

This phase-amplitude decomposition, supported in sig-
nal processing [32, 35] and generative models [27], pro-
vides insight into CFD’s descriptive power. In practice,
to reduce computational cost, we furehr introduce an ad-
ditional feature extractor f to map input variables into a
latent space, which is similar to previous works in dis-
tribution matching [10, 26, 55, 57]. We also use a pa-
rameterized sampling network ψ to obtain the distribution
of frequency argument t, thereby extending the CFD to a
more general parameterized form, i.e., Neural Character-
istic Function Discrepancy (NCFD) as CT (x, x̃; f, ψ) =∫
t

√
Chf(t; f)dFT (t;ψ), where Chf(t; f) is defined as(∣∣Φf(x)(t)− Φf(x̃)(t)

∣∣)2 + 2
∣∣Φf(x)(t)∣∣ ∣∣Φf(x̃)(t)∣∣ (1 −

cos(af(x)(t)− af(x̃)(t))).

4.2.2. Determining the sampling strategy for NCFD
The core aspect in optimizing CT (x, x̃; f, ψ) lies in de-
termining the form of FT (t;ψ), i.e., how to correctly
and efficiently sample t from a carefully picked distribu-
tion. Similar with works in generative adversarial net-
work [1, 28], we define FT (t) as the cumulative distribution
function (cdf) of a scale mixture of normals, as pT (t) =∫
Σ
N (t|0,Σ)pΣ(Σ)dΣ, where pT (t) is the probability

density function (pdf) of FT (t), N (t|0,Σ) denotes a zero-
mean Gaussian distribution with covariance Σ, and pΣ(Σ)
represents the distribution of Σ. We observe that as the
number of sampled frequency arguments increases, the ap-
proximation of the empirical CF improves, as guaranteed
by Lévy’s Convergence Theorem [31], ultimately leading
to higher quality synthetic data.

4.2.3. Distribution Matching with NCFD
Given the NCFD measure CT (x, x̃; f, ψ), we now propose
a method to utilize NCFD for distribution matching, termed
as Neural Characteristic Function Matching (NCFM). A vi-
sual illustration of the NCFM pipeline is provided in Fig-
ure 4. On one hand, we maximize the NCFD to learn an
effective discrepancy metric by optimizing the network ψ.
On the other hand, we minimize this learned NCFD to ob-
tain an optimal synthetic dataset, D̃. In practice, we in-
troduce a hyper-parameter α to balance the amplitude and

phase information in the NCFD, then the minmax optimiza-
tion problem can be formulated as:

min
D̃

max
ψ

L(D̃,D, f, ψ) = min
D̃

max
ψ

Ex∼D,x̃∼D̃CT (x, x̃; f, ψ)

= min
D̃

max
ψ

Ex∼D,x̃∼D̃

∫
t

√
Chf(t; f) dFT (t;ψ)

where Chf(t; f) = α
((∣∣Φf(x)(t)− Φf(x̃)(t)

∣∣)2)+ (1− α)·

(2
∣∣Φf(x)(t)

∣∣ ∣∣Φf(x̃)(t)
∣∣) · (1− cos(af(x)(t)− af(x̃)(t))).

(8)
For the design of f , we used a hybrid approach that
combines a pre-trained model with a randomly initialized
model, both selected from a subset of trained models. This
ensures that the feature extractor remains moderately di-
verse yet discriminative. The hybrid feature extractor is
constructed by β-blending the checkpoints of the initial and
final models, where each model is chosen from a specific
subset of available models. At each distillation step, the
blending coefficient β ∈ (0, 1) is sampled from a uniform
distribution U(0, 1), providing a balanced combination of
initial and final checkpoints. Our NCFM can be seamlessly
integrated with additional data curation steps, such as gener-
ating soft labels with a pre-trained neural network and per-
forming dataset finetuning. Unlike prior methods that focus
on learning soft labels [16, 19, 36], NCFM simply leverages
a pre-trained network to efficiently generate soft labels for
the distilled dataset, improving both efficiency and effec-
tiveness. However, these additional curation steps are not
essential for NCFM, as it can achieve SOTA performance
within the pure minmax framework.

5. Experiments

5.1. Setup
Baseline methods. We compared NCFM with several rep-
resentative approaches in dataset distillation and coreset se-
lection. These include gradient-matching methods such as
DC [56], DCC [24], DSA and DSAC [54]. Kernel-based
methods like KIP [34] and FrePo [58] were also included.
Distribution-matching methods like CAFE [47], DM [55],
IDM [57], M3D [53], IID [10], and DSDM [26] were part of
the evaluation. We also included trajectory-matching meth-
ods such as MTT [6], FTD [12], ATT [30], and TESLA [9].
State-of-the-art methods like DATM [16], G-VBSM [40],
and RDED [45] were also considered in our comparisons.
Additionally, we benchmarked our method against classi-
cal coreset selection techniques, including random selec-
tion, Herding [50], and Forgetting [46].
Datasets and Networks. Our evaluations were conducted
on widely-used datasets, including CIFAR-10 and CIFAR-
100 [22] with resolution of 32×32, Tiny ImageNet [23] with
resolution of 64×64, and ImageNet subsets with resolution
of 128×128, i.e., ImageNette, ImageWoof, ImageFruit, Im-
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Table 1. Results of NCFM on CIFAR-10/100, and Tiny ImageNet (resolution of 64×64) datasets.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 1 10 50 1 10 50

Ratio (%) 0.02 0.2 1 0.2 2 10 0.2 2 10

Random 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 30.0±0.4 1.4±0.1 5.0±0.2 15.0±0.4

Herding 21.5±1.2 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 33.7±0.5 2.8±0.2 6.3±0.2 16.7±0.3

Forgetting 13.5±1.2 23.3±1.0 23.3±1.1 4.5±0.2 15.1±0.3 30.5±0.3 1.6±0.1 5.1±0.2 15.0±0.3

DC 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 - - - -
DSA 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 42.8±0.4 - - -
DCC 32.9±0.8 49.4±0.5 61.6±0.4 13.3±0.3 30.6±0.4 40.0±0.3 - - -

DSAC 34.0±0.7 54.5±0.5 64.2±0.4 14.6±0.3 14.6±0.3 39.3±0.4 - - -
FrePo 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.1 42.5±0.2 44.3±0.2 15.4±0.3 25.4±0.2 -
MTT 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4 47.7±0.2 8.8±0.3 23.2±0.2 28.0±0.3

ATT 48.3±1.0 67.7±0.6 74.5±0.4 26.1±0.3 44.2±0.5 51.2±0.3 11.0±0.5 25.8±0.4 -
FTD 46.8±0.3 66.6±0.3 73.8±0.2 25.2±0.2 43.4±0.3 48.5±0.3 10.4±0.3 24.5±0.2 -

TESLA 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 - - -
CAFE 30.3±1.1 46.3±0.6 55.5±0.6 12.9±0.3 27.8±0.3 37.9±0.3 - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 43.6±0.4 3.9±0.2 12.9±0.4 24.1±0.3

IDM 45.6±0.7 58.6±0.1 67.5±0.1 20.1±0.3 45.1±0.1 50.0±0.2 10.1±0.2 21.9±0.2 27.7±0.3

M3D 45.3±0.3 63.5±0.2 69.9±0.5 26.2±0.3 42.4±0.2 50.9±0.7 - - -
IID 47.1±0.1 59.9±0.1 69.0±0.3 24.6±0.1 45.7±0.4 51.3±0.4 - - -

DSDM 45.0±0.4 66.5±0.3 75.8±0.3 19.5±0.2 46.2±0.3 54.0±0.2 - - -
G-VBSM - 46.5±0.7 54.3±0.3 16.4±0.7 38.7±0.2 45.7±0.4 - - -

NCFM (Ours) 49.5±0.3 71.8±0.3 77.4±0.3 34.4±0.5 48.7±0.3 54.7±0.2 18.2±0.5 26.8±0.6 29.6±0.5

Whole Dataset 84.8±0.1 56.2±0.3 37.6±0.4

ageMeow, ImageSquawk, and ImageYellow [18]. Follow-
ing prior studies [16, 48], we used networks with instance
normalization as the default setting. Specifically, dataset
distillation is performed with a 3-layer ConvNet for CIFAR-
10/100, a 4-layer ConvNet for Tiny ImageNet, and a 5-layer
ConvNet for ImageNet subsets. All experiments were con-
ducted with 10 evaluations for fairness, primarily using a
single NVIDIA 4090 GPU.
Other Settings. Following prior works, we implemented
differential augmentation [47, 54] and applied multi-
formation parameterization with a scale factor of ρ = 2
for images, as in [20, 57]. We employed AdamW as our
optimizer. In our setup, we set the number of sampled fre-
quency arguments to 1024. The number of mixture Gaus-
sian components in the sampling network is set to the num-
ber of frequency arguments divided by 16, balancing the
sampling network diversity and computational efficiency.
Further details are provided in the supplementary material.

5.2. Main Results
We verified the effectiveness of NCFM on various bench-
mark datasets of different image-per-class (IPC) settings1.
CIFAR-10/100 and Tiny ImageNet. As shown in Table 1,
NCFM outperforms all state-of-the-art (SOTA) baselines.
Specifically, it surpasses distribution matching methods us-
ing traditional metrics like MSE and MMD, achieving im-
provements of 23.5% and 23.0% on CIFAR-10 and CIFAR-
100 with 1 IPC compared to DM [55]. Additionally, NCFM
maintains SOTA performance even against computationally

1We provide further results on continual learning, neural architecture
search, and larger IPC datasets in the supplementary material.

intensive methods like MTT [6]. Results for larger IPC
settings and comparisons with other SOTA methods like
DATM [16] are in the supplementary material.
Higher-resolution Datasets. We also evaluated NCFM
on larger datasets, specifically the ImageNet subsets. As
shown in Table 2, NCFM demonstrates strong performance
across these challenging benchmarks. In 10 IPC setting,
our method achieves substantial improvements of 20.5% on
ImageSquawk, compared to the baseline MTT [6]. Remark-
ably, NCFM exhibits robust performance under relatively
small IPC. For instance, compared to RDED [45], NCFM
yields a significant improvement of 19.6% on ImageNette.
Computational Efficiency Evaluation. We tested the
training speed and GPU memory of our NCFM compared
with strong baseline methods on different datasets. As con-
ventional recognition, trajectory matching based methods
usually achieve better results than distribution matching in
practice [6, 9, 12]. However, both superior training effi-
ciency and GPU memory efficiency are observed in NCFM
across all benchmark datasets, while achieving better re-
sults. Specifically, we measured the average training time
over 1000 distillation iterations for each method, as summa-
rized in Table 3. For CIFAR-100 at IPC 50, NCFM achieves
nearly 30× faster speeds compared to TESLA [9] with-
out the sampling network, and maintains over 20× faster
speeds with the sampling network included. Moreover, we
conducted a comprehensive analysis of computational effi-
ciency, where GPU memory is expressed as the peak mem-
ory usage during 1000 iterations of training, as shown in Ta-
ble 3. While most existing methods encounter out of mem-
ory (OOM) issues at IPC = 50, our method requires only
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Table 2. Results on ImageNet subsets (resolution of 128×128) when employing NCFM across different IPCs.

Dataset ImageNette ImageWoof ImageFruit ImageMeow ImageSquawk ImageYellow
IPC 1 10 1 10 1 10 1 10 1 10 1 10

Ratio (%) 0.105 1.050 0.110 1.100 0.077 0.77 0.077 0.77 0.077 0.77 0.077 0.77

Random 23.5±4.8 47.7±2.4 14.2±0.9 27.0±1.9 13.2±0.8 21.4±1.2 13.8±0.6 29.0±1.1 21.8±0.5 40.2±0.4 20.4±0.6 37.4±0.5

MTT 47.7±0.9 63.0±1.3 28.6±0.8 35.8±1.8 26.6±0.8 40.3±1.3 30.7±1.6 40.4±2.2 39.4±1.5 52.3±1.0 45.2±0.8 60.0±1.5

DM 32.8±0.5 58.1±0.3 21.1±1.2 31.4±0.5 - - - - 31.2±0.7 50.4±1.2 - -
RDED 33.8±0.8 63.2±0.7 18.5±0.9 40.6±2.0 - - - - - - - -

NCFM (Ours) 53.4±1.6 77.6±1.0 27.2±1.1 48.4±1.3 29.2±0.7 44.8±1.5 34.6±0.7 58.2±1.2 41.6±1.2 72.8±0.9 46.6±1.5 74.2±1.4

Whole Dataset 87.4±1.0 67.0±1.3 63.9±2.0 66.7±1.1 87.5±0.3 84.4±0.6

Table 3. Training speed (s/iter) and peak GPU memory (GB)
comparison on a single NVIDIA A100 80G. OOM marks out-of-
memory cases. ‘Reduction’ shows NCFM’s speed and memory
improvements over the best-performing baseline in the table.

Resource Speed (s/iter) GPU Memory (GB)

Dataset CIFAR-100 Tiny ImageNet CIFAR-100 Tiny ImageNet
IPC 10 50 10 50 10 50 10 50

MTT 1.92 OOM OOM OOM 61.6 OOM OOM OOM
FTD 1.68 OOM OOM OOM 61.4 OOM OOM OOM

TESLA 5.71 28.24 42.01 OOM 10.3 44.2 69.6 OOM
DATM OOM OOM OOM OOM OOM OOM OOM OOM

NCFM w/o ψ 0.73 0.96 2.40 5.67 1.4 1.9 6.4 8.4
Reduction 2.3× 29.4× 17.5× - 7.4× 23.3× 10.9× -

NCFM 1.33 1.36 3.27 7.22 1.6 2.0 6.5 8.7
Reduction 1.3× 20.8× 12.8× - 6.4× 22.1× 10.7× -

about 1.9GB GPU memory on CIFAR-100. This further
demonstrates the exceptional scalability of our approach un-
der high IPC conditions. Further results on CIFAR-10 are
provided in the supplementary material.
Cross-Architecture Generalization. We evaluated the
cross-architecture generalization capability of our method
by testing its performance on various network architec-
tures, including AlexNet [22], VGG-11 [42], and ResNet-
18 [17]. In this evaluation, synthetic data were condensed
using a 3-layer ConvNet, and each method was subse-
quently tested across different architectures to assess ro-
bustness and adaptability. Tables 4 summarize the results
on CIFAR-10 with 10 and 50 IPC settings, respectively. In
both cases, NCFM consistently outperformed other meth-
ods across all architectures, demonstrating its strong ability
to generalize effectively even when trained on a different
architecture. Results on other backbone networks beyond
ConvNet are provided in the supplementary material.

5.3. Ablation Study
5.3.1. Effect of the Sampling Network
To rigorously evaluate the impact of the sampling network,
ψ, within the minmax paradigm of NCFM, we conducted
performance comparisons with and without this component.
To ensure a controlled and fair assessment, no additional
data curation techniques were applied (such as fine-tuning
or soft label integration). As shown in Table 5, employing
the sampling network ψ yields substantial improvements in

Table 4. Cross-architecture generalization performance (%) on
CIFAR-10. The synthetic data is condensed using ConvNet, and
each method is evaluated on different architectures.

IPC Method ConvNet AlexNet VGG ResNet

10

DSA 52.1±0.4 35.9±1.3 43.2±0.5 35.9±1.3

MTT 64.3±0.7 34.2±2.6 50.3±0.8 34.2±2.6

KIP 47.6±0.9 24.4±3.9 42.1±0.4 24.4±3.9

NCFM 71.8±0.3 67.9±0.5 68.0±0.3 67.7±0.5

50
DSA 59.9±0.8 53.3±0.7 51.0±1.1 47.3±1.0

DM 65.2±0.4 61.3±0.6 59.9±0.8 57.0±0.9

NCFM 77.4±0.3 75.5±0.3 75.5±0.3 73.8±0.2

synthetic data quality across various datasets. For example,
integrating ψ into our method provides a 3.2% performance
increase on CIFAR-10 at 50 IPC. Our method yields a 2.6%
performance increase on Tiny ImageNet at 1 IPC and 10.1%
at 10 IPC. Similar trends are observed across ImageNet sub-
sets, including gains of 2.8% on ImageMeow and 2.0% on
ImageSquawk. The strong performance benefits from sam-
pling network ψ emphasize the effectiveness of the minmax
paradigm compared to straightforward CFD minimization.

5.3.2. Impact of Amplitude and Phase Components

We examine individual contributions of amplitude and
phase alignment within the NCFD measure. By selec-
tively adjusting amplitude or phase alignment, controlled
by the hyperparameter α that represents the ratio of am-
plitude to phase weight in the loss function, we find that
both components are essential. To further evaluate the ef-
fect of α on performance, we conducted ablation studies on
the CIFAR-10 and CIFAR-100 datasets. As noted in prior
works [32, 35], the amplitude term primarily enhances the
diversity of generated data, while the phase term contributes
to realism by accurately capturing data centers. For ex-
ample, as shown in Figure 5, on CIFAR-10 with 10 IPC,
when the amplitude information dominates the loss (e.g.,
α = 0.999), the test accuracy decreases about 3% compared
to our best results. Conversely, when the phase information
dominates (e.g., α = 0.001), the test accuracy decreases by
about 1%. Results demonstrate that a balanced integration
of both components yields the highest accuracy.
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Table 5. Test Performance (%) on CIFAR-10, CIFAR-100, Tiny ImageNet and ImageNet subsets with and without the sampling network
ψ. We find that sampling network ψ significantly improves performance, even without additional data curation steps.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet ImageFruit ImageMeow ImageSquawk ImageYellow
IPC 10 50 10 50 1 10 50 10 10 10 10

NCFM w/o ψ 65.6 74.2 45.9 53.7 9.4 14.2 22.0 39.6 51.6 68.8 67.6
NCFM 68.9 77.4 48.7 54.4 12.0 24.3 26.5 41.4 54.4 70.8 69.2
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Figure 5. Impact of amplitude and phase components in the NCFD
measure across various datasets and IPC settings. The figure il-
lustrates the relationship between the amplitude-to-phase ratio α
in Eq. (8). Results indicate that balancing amplitude (for diver-
sity) and phase (for realism) information leads to improved per-
formance. Baseline results were obtained using DM [55].

5.3.3. Effect of the Number of Sampled Frequency
Arguments in NCFD

To assess the impact of the number of sampled frequency
arguments, t, generated by the sampling network ψ, we var-
ied the sample count and measured the corresponding per-
formance. As illustrated in Figure 6, increasing the num-
ber of sampled arguments initially enhances the quality of
synthetic data by facilitating finer distributional alignment.
For example, accuracy on CIFAR-10 at 10 IPC improves
from 62% with 16 sampled frequency arguments to ap-
proximately 67 % with 1024, indicating a positive correla-
tion between the sampled number and accuracy. However,
beyond 1024 arguments, performance gains plateau, with
accuracy stabilizing around 67-68% even as the sampling
number increases to 4096. This trend suggests that a moder-
ate number achieves an optimal balance between computa-
tional efficiency and accuracy. We observed that additional
cost remains minimal as the number of sampled arguments
increases, underscoring NCFM’s ability to produce high-
quality synthetic data with low computational cost.
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Figure 6. Impact of sampled frequency count in NCFD on ac-
curacy across datasets and IPC. Increasing frequencies improves
accuracy up to a threshold, beyond which gains diminish.

6. Discussion
6.1. Training stability of NCFD
The training stability of our minmax paradigm is crucial to
its effectiveness. Unlike traditional discrepancy measures,
NCFM operates within the complex plane to conduct min-
max optimization. While instability is a common issue in
minmax adversarial optimization, as seen in generative ad-
versarial networks [2, 37, 39], NCFM consistently main-
tains stable optimization throughout training, as illustrated
in Figure 7. This stability is further supported by theoretical
guarantees of weak convergence in Theorem 1, demonstrat-
ing the robustness of the CF-based discrepancy under di-
verse conditions and contributing to NCFM’s reliable con-
vergence across datasets.

L
o
ss

Iteration

Figure 7. Training dynamics of the minmax optimization process
across different datasets and various IPC settings.

6.2. Correlation between CFD and MMD
To better understand NCFM, we examine the relationship
between the Characteristic Function Discrepancy (CFD)
and Maximum Mean Discrepancy (MMD).
CF as Well-Behaved Kernels in the MMD Metric. The
CF discrepancy term

∫
t

√
Chf(t; f)dFT (t) in our loss can

be viewed as a well-behaved kernel in MMD, specifically
as a Characteristic Kernel [43]. Unlike MMD, which relies
on fixed kernels, NCFM adaptively learns FT (t), enabling
flexible kernel selection for optimal distribution alignment.
Furthermore, mixtures of Gaussian distributions within the
CF framework produce well-defined characteristic kernels.
When MMD employs a characteristic kernel of the form∫
t
e−j⟨t,x−x̃⟩dFT (t), it aligns with the structure of CFD,

demonstrating that MMD is a special case of CFD when
only specific moments are matched. This insight also
explains the minimal memory overhead observed as IPC
grows, highlighting the efficiency of our approach.
Computational Advantage of CFD over MMD. In con-
trast to MMD, which requires quadratic time in the number
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of samples for approximate computation, CFD operates in
linear time relative to the sampling number of frequency ar-
guments, which aligns results in [1]. This efficiency makes
CFD substantially faster and more scalable than MMD, of-
fering a particular advantage for large-scale datasets.

7. Conclusion
In this work, we redefined distribution matching for
dataset distillation as a minmax optimization problem
and introduced Neural Characteristic Function Discrepancy
(NCFD), a novel and theoretically grounded metric de-
signed to maximize the separability between real and syn-
thetic data. Leveraging the Characteristic Function (CF),
our method dynamically adjusts NCFD to align both phase
and amplitude information in the complex plane, achiev-
ing a balance between realism and diversity. Extensive ex-
periments demonstrated the computational efficiency of our
approach, which achieves state-of-the-art performance with
minimal computational overhead, showcasing its scalability
and practicality for large-scale applications.
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